KMAP による振動解析-単振り子

2017(H29).11.28 片柳亮二

【問題】図1のように、O点に固定した長さlの 棒に質量mの物体をつるし、トルクTを1秒間 ステップ上に与えた場合、どのような振動運動と なるのか解析せよ.

ただし, *l*=0.3(m), *m*=0.5(kg)とする. なお, 棒の質量は無視し,振り子の振動の角度は小さい と仮定する.

【解】回転運動の方程式は、O点まわりの慣性 モーメントをIとして、次式で与えられる.

$$I\ddot{\theta} = -mg l\sin\theta - T \tag{1}$$

ここで, 慣性モーメントは*I=ml²*である.また, 角度θは小さいとして, sinθ≒θと近似すると, 運動方程式は次のようになる.

$$\ddot{\theta} = -\frac{g}{l}\theta - \frac{T}{ml^2} \tag{2}$$

いま、 $q=\dot{\theta}$ とすると(2)式は次の状態方程式で表される.

$$\begin{bmatrix} \dot{\theta} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & 0 \end{bmatrix} \cdot \begin{bmatrix} \theta \\ q \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac{1}{ml^2} \end{bmatrix} T$$
(3)

このシステムについて、まず制御なしの場合をКМАРで解析してみよう.

図2 単振り子の特性

KMAP(バージョン 114以降)を起動して、
「KMAP***解析内容選択画面」⇒ "4" キーイン

図1 単振り子

- ②「データファイル利用方法」⇒ "3"をキーイン
- ③「例題ファイルデータの取得」⇒ここでは例として、"2"をキーイン
- ④「2: KMAPによる工学解析入門」⇒ "13" キーイン
- ⑤「新しいファイル名入力してください」と表示されるので,以下,次 のようにキーイン

0 0 0 1 4

これで解析計算が自動的に実行されて,安定解析結果が次のように表示される.

**** POLES AND ZEROS ***** POLES (2), EIVMAX= 0.5715D+01 Ν REAL IMAG 0.0000000D+00 -0.57154758D+01 [0.0000E+00, 0.5715E+01] 1 0.57154758D+01 2 0.0000000D+00 周期 P(sec)= 0.1099E+01 ZEROS (0), II/JJ= 4/1, G=-0.2222D+02 REAL IMAG Ν

Enter キーを押すと、この画面が消え、次の「解析結果の表示」の画面になる.

\$ 解析結果の表示 >\$\$\$\$\$\$\$(KMAP***)\$\$\$\$\$\$\$\$\$ \$\$ 0:表示終了(次の解析 または 終了へ) \$\$ 1 : 安定解析図(f 特,根軌跡) (Excel を立ち上げてください) \$\$ \$\$ \$\$ (極・零点配置,根軌跡,周波数特性などの図が表示できます) \$\$ (極・零点の数値データは"9"(安定解析結果)で確認できます) \$\$ \$\$ (Excel を立ち上げてください) \$\$ 6 : ナイキスト線図 \$\$ 7 : シミュレーション図 (KMAP(Simu)) (Excel を立ち上げてください) \$\$ \$\$ \$\$ (Z191~Z200に定義した値をタイムヒストリー図に表示できます) \$\$ \$\$ 9 : 釣り合い飛行時のデータおよび安定解析結果 (TES13.DAT)
\$\$ 10 : その他の Excel 図, 101 : KMAP 線図(1), 102 : KMAP 線図(2) \$\$ \$\$ \$\$ 14 : 取り扱い説明書 (pdf 資料), (15:インプットデータ表示), (16:Ap, B2 行列表示) \$\$

ここで、「1」とキーイン/Enter すると、極・零点の図を次のように Excel で表示させことができる.

次に,「解析結果の表示」画面で「7」とキーインすると,シミュレーション 図を次のように Excel 表示させることができる.

「解析結果の表示」の画面で「101」とキーイン/Enter すると,次の KMAP 線図 を表示できる.これは,インプットデータを入力の順番にグラフ化したもので, 制御系のブロック図にミスがないか確認するのに有効である.

図 6 KMAP 線図(2)

このケースのインプットデータは次のようである.被制御系の状態方程式の 次元数は2で,この次元数はインプットデータの最初の部分にて指示する. (同様な問題では,このように例題ファイルをコピー利用して,数値を変更して 解析を行っていくのがミスを防ぐのに有効)

##############################(インプッ	ŀ	デ	^ヾ ータ)#####	####	#####	####	####	####	‡
EIGE.Q3.1-1.DAT(単振り子)									
NXP = 2			(←状態方:	程式	この次	:元娄	t)		
tmax(s) = 10.000			(←シミュ	レー	ーショ	コンク	り時	間)	
1. NU1> 6			(←入力 Ŭ	1の	時間	補間	のザ	Γħ,	〔数〕
T, U1 0.00 0.00					-				
0.50 0.00			(←人力 U)	10	時間	とそ	のと	き	り値)
0.51 0.30			(この例	で「	I 0.8	」 秒	でし	1=0	. 3)
1.51 0.30									
1.52 0.00									
60.00 0.00				Г					7
					ユーサ゛	は入	、カオ	「要	
3 //									
32 //AP, DZ 1丁列丁 「9 設 正 22 山1-C・(m)	ш	0		4	- 1	0	0	0	5
33 II - G, (II)	п	0	0.3000E+00	11	1	0	0	0	0
34 II 2 - 0; (1) 25 $\text{ II} 2 - 0$; (- α)	ц Ц	0	-0.0000E+00	11	2	0	0	0	0
$35 \text{ H}_{1} - \text{H}_{2} / \text{H}_{2} \cdot (-\alpha / 1)$	Ц	0	-0.9000E+01	2/	3	2	2	0	0
$37 H5=6^{-1}(1 0)$	н	0	0 1000E+01	11	5	0	0	0	0
38 H6=6; (-1, 0)	н	0	-0.1000E+01	11	6	0	0	0	0
$39 H7 = H6/H1^{\circ} (-1/m)$	н	0	0.10002.01	24	. 7	6	1	0 0	0
40 H8 = H7/H2; (-1/ml)	н	0		24	8	7	2	õ	Ő
41 H9 = H8/H2; $(-1/m/2)$	н	0		24	. 9	8	2	ŏ	Ő
42 AP $(11, 12)$ H5:	н	Õ		621	1	2	5	õ	ŏ
43 AP(12, J1) H4;	Ĥ	0		621	2	1	4	Õ	Õ
44 //(コントロール入力)=(Z1, Z3, Z5)		Č.			_				
45 B2 (I2, J1) H9;	Н	0		623	2	1	9	0	0
46 //									
47 {Print(AP, B2, CP)} I2, J1, K1;	Н	0		671	2	1	1	0	0
48 //(コントロール Z1 に強制力インプット)									
49 Z1=U1*G;	Н	0	0.1000E+01	52	1	1	0	0	0
50 //									
51 //									
52 //安定解析出力に追加する場合									
53 //は,下記に R(6+NXP)~を設定.									
54 //(実際の出力順はY(4+NXP)~)									
55 //シミュレーション用出力(Z191~Z200)									
56 //(このデータが TES6. DAT に入る)				_					
57 Z191=Z6*G; (x1)	H	0	0.1000E+01	53	191	4	0	0	0
58 Z192=Z7*G; (x2)	Н	0	0.1000E+01	53	192	5	0	0	0

(参考図書)

1) 片柳亮二: KMAPによる工学解析入門, 産業図書, 2011.

2) 片柳亮二:初学者のためのКМАР入門,産業図書, 2012.

以上